Experience Table: Difference between revisions

From Melvor Idle
m (Add anchor for table)
No edit summary
Line 1: Line 1:
'''Note:''' Enabling "Virtual Levels" in the [[Settings]] will show the player if they would be on a level higher than 99, even though this gives no benefits.
'''Note:''' Enabling "Virtual Levels" in the [[Settings]] will show the player if they would be on a level higher than 99, even though this gives no benefits. [[Pets|Pet]] drop rate calculations are based on your Virtual Level, however that calculation will use your Virtual Level regardless of the setting.


<onlyinclude>The experience difference between level <math display='inline'>L-1</math> and level <math display='inline'>L</math> is approximately <math display='inline'>\left\lfloor \frac{1}{4} \left( L-1+300\times 2^{\frac{L-1}{7}} \right) \right\rfloor</math>. The table below shows this experience difference for each level and also the cumulative experience from level 1 to level <math display='inline'>L</math>.
<onlyinclude>The experience difference between level <math display='inline'>L-1</math> and level <math display='inline'>L</math> is approximately <math display='inline'>\left\lfloor \frac{1}{4} \left( L-1+300\times 2^{\frac{L-1}{7}} \right) \right\rfloor</math>. The table below shows this experience difference for each level and also the cumulative experience from level 1 to level <math display='inline'>L</math>.

Revision as of 03:30, 5 May 2021

Note: Enabling "Virtual Levels" in the Settings will show the player if they would be on a level higher than 99, even though this gives no benefits. Pet drop rate calculations are based on your Virtual Level, however that calculation will use your Virtual Level regardless of the setting.

The experience difference between level [math]\displaystyle{ L-1 }[/math] and level [math]\displaystyle{ L }[/math] is approximately [math]\displaystyle{ \left\lfloor \frac{1}{4} \left( L-1+300\times 2^{\frac{L-1}{7}} \right) \right\rfloor }[/math]. The table below shows this experience difference for each level and also the cumulative experience from level 1 to level [math]\displaystyle{ L }[/math].

The formula to calculate the amount of experience needed to reach level [math]\displaystyle{ L }[/math] is:

[math]\displaystyle{ \text{Experience} = \left \lfloor{\frac{1}{4}\sum_{\ell=1}^{L-1}}\left\lfloor{\ell + 300\cdot2^{\ell/7}}\right\rfloor\right\rfloor }[/math]

If the floor functions are ignored, the resulting summation can be found in closed form to be:

[math]\displaystyle{ \text{Experience} \approx \frac{1}{8} \left( {L}^{2} - L + 600 \, \frac{{2}^{L/7}-2^{1/7}} {{2}^{1/7}-1} \right) }[/math]

The approximation is very accurate, always within 100 experience but usually less than around 10 experience.