Experience Table: Difference between revisions

From Melvor Idle
m (Formatting changes)
m (Add anchor for table)
Line 3: Line 3:
<onlyinclude>The experience difference between level <math display='inline'>L-1</math> and level <math display='inline'>L</math> is approximately <math display='inline'>\left\lfloor \frac{1}{4} \left( L-1+300\times 2^{\frac{L-1}{7}} \right) \right\rfloor</math>. The table below shows this experience difference for each level and also the cumulative experience from level 1 to level <math display='inline'>L</math>.
<onlyinclude>The experience difference between level <math display='inline'>L-1</math> and level <math display='inline'>L</math> is approximately <math display='inline'>\left\lfloor \frac{1}{4} \left( L-1+300\times 2^{\frac{L-1}{7}} \right) \right\rfloor</math>. The table below shows this experience difference for each level and also the cumulative experience from level 1 to level <math display='inline'>L</math>.


{| class="wikitable alternating-rows sticky-header" style="text-align:right;"
{| class="wikitable alternating-rows sticky-header" style="text-align:right;" id="xp_table" <!-- this ID is an anchor for incoming links -->
! Level !! XP !! Difference
! Level !! XP !! Difference
! rowspan="26" |
! rowspan="26" |

Revision as of 21:49, 24 March 2021

Note: Enabling "Virtual Levels" in the Settings will show the player if they would be on a level higher than 99, even though this gives no benefits.

The experience difference between level [math]\displaystyle{ L-1 }[/math] and level [math]\displaystyle{ L }[/math] is approximately [math]\displaystyle{ \left\lfloor \frac{1}{4} \left( L-1+300\times 2^{\frac{L-1}{7}} \right) \right\rfloor }[/math]. The table below shows this experience difference for each level and also the cumulative experience from level 1 to level [math]\displaystyle{ L }[/math].

The formula to calculate the amount of experience needed to reach level [math]\displaystyle{ L }[/math] is:

[math]\displaystyle{ \text{Experience} = \left \lfloor{\frac{1}{4}\sum_{\ell=1}^{L-1}}\left\lfloor{\ell + 300\cdot2^{\ell/7}}\right\rfloor\right\rfloor }[/math]

If the floor functions are ignored, the resulting summation can be found in closed form to be:

[math]\displaystyle{ \text{Experience} \approx \frac{1}{8} \left( {L}^{2} - L + 600 \, \frac{{2}^{L/7}-2^{1/7}} {{2}^{1/7}-1} \right) }[/math]

The approximation is very accurate, always within 100 experience but usually less than around 10 experience.